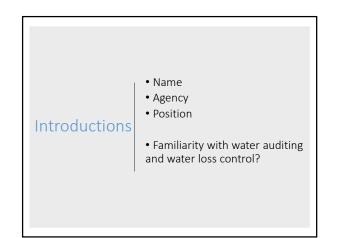
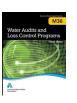
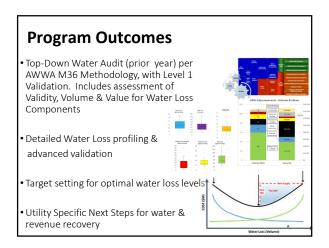
North Carolina Water Loss Workshop January 2019

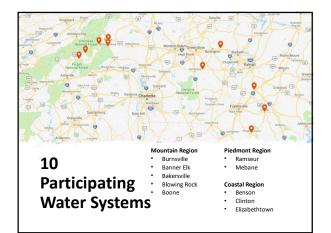

North Carolina Water Loss Program Phase 1B Workshop January 2019

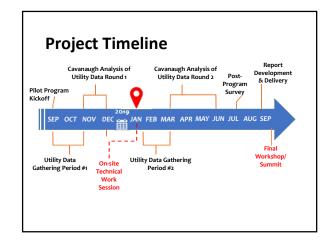
Agenda

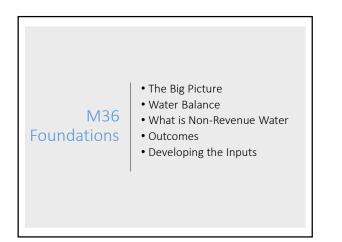
- Welcome/Introductions
- M36 Auditing Foundations
- Breakout groups: Developing the Inputs
- Lunch
- Validity Scoring & the Data Grading Matrix
- Breakout groups: Data Validity Grades
- Supply Meter Verification & Customer Meter Testing
- Breakout Groups: Recommendations & Next Steps
- Review and Wrap-Up

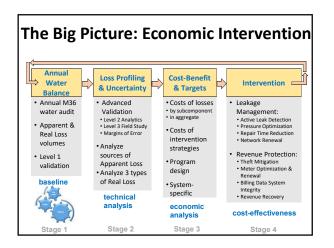

GOAL:

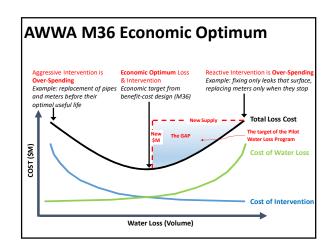

Demonstration of AWWA M36 methodology for cost-effective water loss management

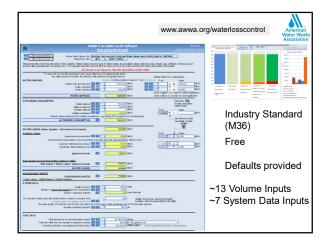

Key Tasks:

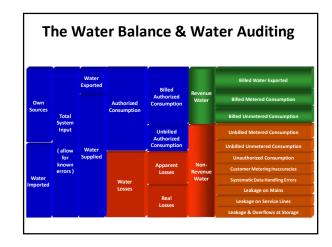

1. Training & Technical Assistance to 10 small and mid-size utilities across North Carolina

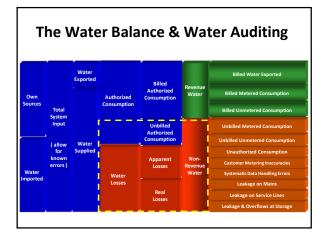

2. Analysis of pilot outcomes & opportunity for water loss & revenue recovery

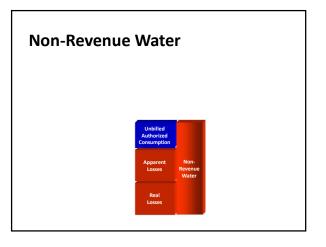


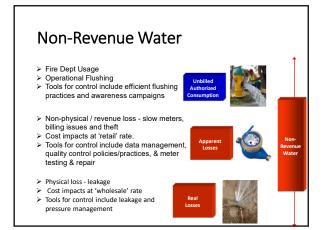


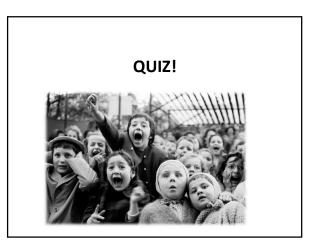


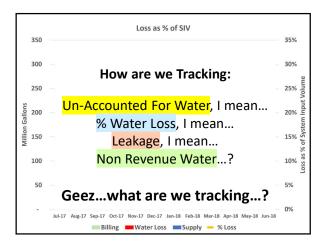


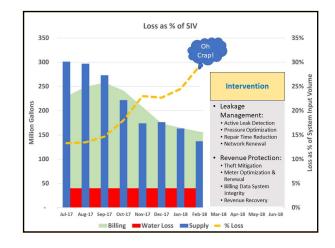


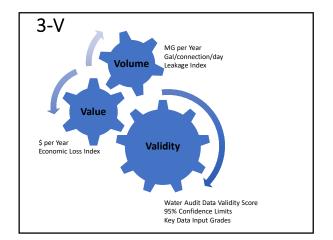


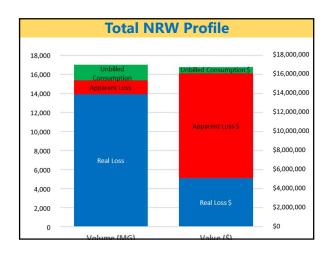


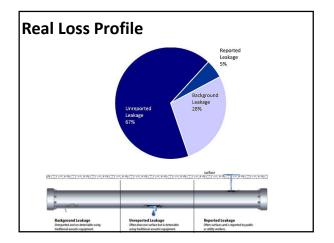


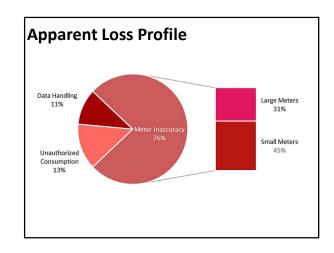


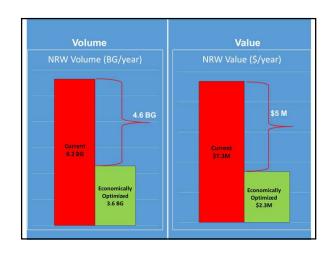


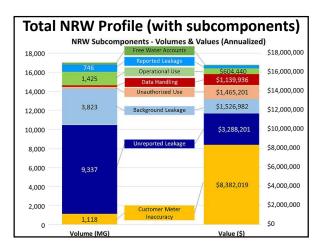


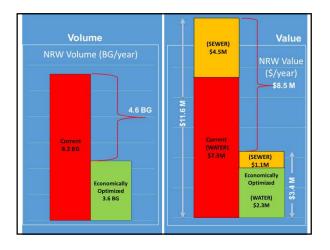

QUIZ			
Billed	Fire Department flushing		
Authorized	Under registering customer meters		
i i	Pipe joint leakage		
Unbilled	Water theft		
Consumption	DOT usage		
Apparent Losses	AMR device transmission failure		
-	Water main break		
Real Losses	Storage tank overflows		

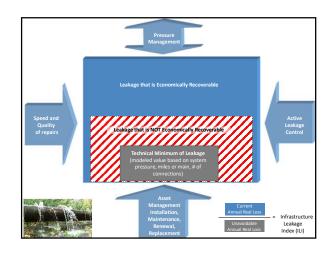


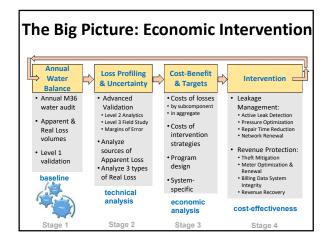


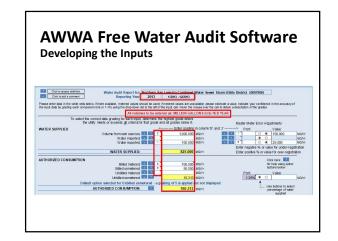


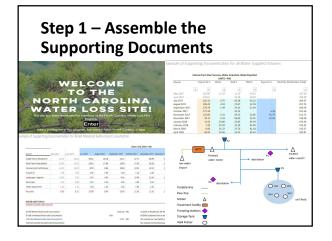


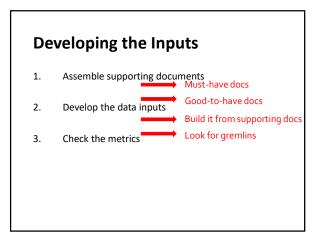


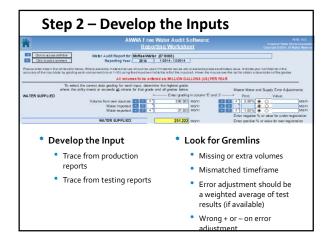


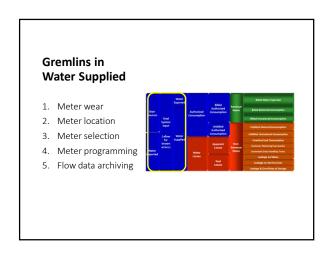


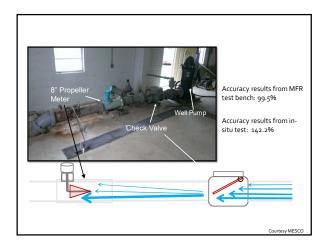


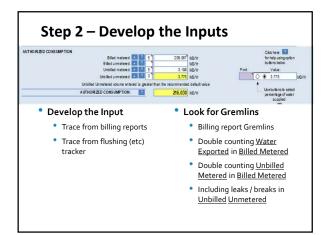


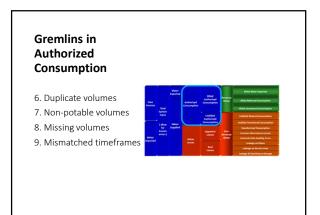


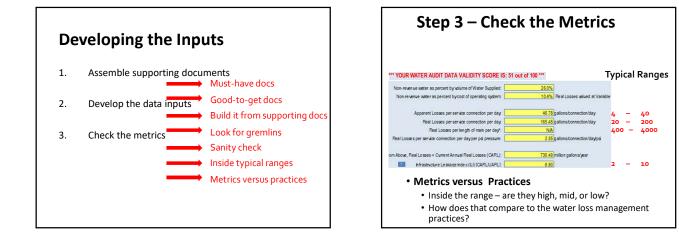

Developing the Inputs

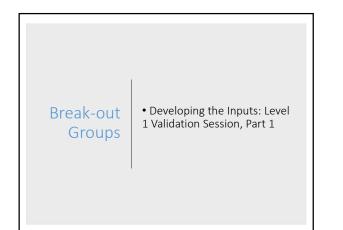

- 1. Assemble supporting documents
- 2. Develop the data inputs
- 3. Check the metrics


Assemble supporting documents Must-have docs Develop the data inputs Good-to-have docs Check the metrics

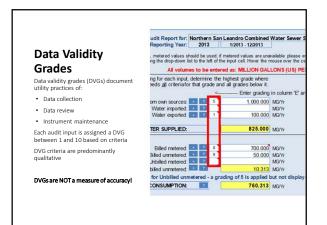


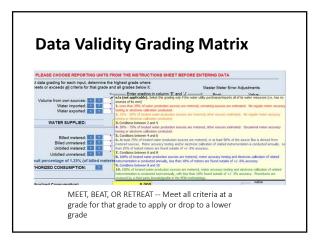


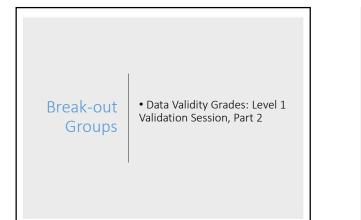

Flow Data Archiving


- Production flow data should be reviewed every business day for data gaps
- Gaps occur due to:
 - Unplanned interruption: lightning strike, power failure
 - Planned interruption: instrumentation calibration
- Gaps in water flow data should be quantified and added back to the daily total

Exam	ple of Water Pump	oing Data Gaps and	
8/15/2012, hrs	High Service Pumping Rate, mgd actual flow	High Service Pumping Rate, mgd raw recorded data	
0:00	8.69	8.69	
1:00	8.65	8.65	
2:00	8.32	8.32	
3:00	8.11	8.11	
4:00	7.94	0	
5:00	8.02	0	
6:00	8.44	0	
7:00	8.98	0	
8:00	9.34	0	
9:00	9.25	0	
10:00	9.17	0	
11:00	9.12	9.12	
12:00	9.27	9.27	
13:00	9.22	9.22	
14:00	9.08	9.08	
15:00	8.99	8.99	
16:00	9.14	9.14	
17:00	9.18	9.18	
18:00	9.25	9.25	
19:00	9.22	9.22	
20:00	8.82	8.82	
21:00	8.78	8.78	
22:00	8.75	8.75	
23:00	8.71	8.71	
0:00	8.68	8.68	
Total	212.43	151.29	
Average	8.85	6.30	
Difference		2.55	
(Source:	AWWA M36 Publica	ition, 4 th Ed.)	

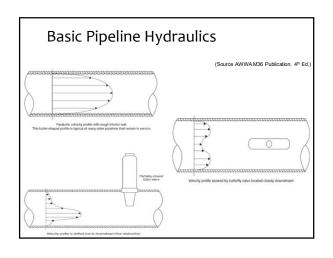






	2	1	4	5	6	7		9
				WATER SUPPLIE	10			
roduction maning lo regular ng or nducted	25X - 50X of treated water production sources are metered, other sources estimated. No regular meter accuracy testing or electronic calibration conducted	Canditions between 2 and 4	5011 - 7511 of treated water production sources are metered, other sources estimated Docestreat meter accuracy/testing or electronic calibration conducted.	CandStana between 4 and 5	At least 75% of leasted water production sources are mettered, gr. at least 10% of the sources flow is derived from mettered sources. Mere accuracy testing and/or electronic calibration of celleted instrumentation is conducted areautively. Least that 25% of tested metters are found outside of ar-5% accuracy.	Conditions between 6 and 8	10005 of treated water production sources are matered, mater accurate testing and testsmin will avoid of related instrumentation is conducted amustip, less than 1055 of matere are found subside of +0-655 accurding	Conditions 1 B and
fforts to wring wroes	Scradituler & Scradituler & Scradituler & Scradituler & Scratter &	for existing meters. d water production	ts casality for 6 Formalize annual meter accuracy meters, specify the frequency of installation of meters on unmeter sources and complete repl, obsitettidefective n	testing for all source testing. Complete ed water production scement of all	to gatherine B Conduct annual meter accuracy tests of related instrumentation on all meter regular basis. Complete project to intel defective existing, meters to find refle- population is metered. Pagear or refle- of vii-ES accuracy.	installations on a tail new, or replace production meter	to cautiful for 1 Maintain annual meter accuracy tes related noti-unwratalon for all meter regisce meters outside of 25 soo meter technology, pilot one or mor innevative meters in attempt to fu accuracy.	ting and calib notaliations. I aracy. Investig e replacement
n meters assured complete andition envined	No automatic datalogging of production velocimes, daily reaching are scribed on paper reached without any accountability controls. Howe are not been determined accounting the scribble account on charges are not employed in calculating the "science fram come sources" component and archived free data is adjusted only when groups/unident data error occurs.	Conditions between 2 and 4	Production meter data is logged automatically in electrons format and revened at lead on a travelity basis with necessary corrections implemented. "Volume from ours sourcest" busistions induction estimate of data) changes in the data sugged policies. Inter data data data data data data data data data	Conditions between 4 and 6	Houly production meter data logged automatically it reviewed on at least a weekly basis. Datas is adjusted oncer gross are unknown mathematicmental and a second and mathematic and a second and an use leasting. Terkiting a balanced leasting. Terkiting a balanced "Volume from ever source" component, and data gass in the arctimed data are corrected on at least a network balance.	Conditions Detiveen 5 and II	Confirmance production notice data in logget duttimatically. It invites and hatmatically a treatment adjusted to context dyac basis detected meterical accuracy territory causes of meterical accuracy territory Tarihitariage facility detection throngs are accuracy territory target and the accuracy territory activity basis.	Conditions to 8 and
ucture copture dure to to basis Obtain n about during ers and herature	tacaditutor.8 Install extensito delloggra e exponent on production maters. Candidas rutatilition of lived instrumentation in advento calculario statemini a comparistant statemic candidato instrumenti a comparistant data una encontrity basis to deface grass amonalise and data para candidato instrumenti a comparistant statemic candidato instrumenta instrumentation statemic candidato instrumenta instrumentation statemic candidato instrumentation statemic candidato instrumentation a comparistant statemic candidato instrumentation statemic can		In the statistic of the second		Standblack Ensure that all have data to obtained and archived on at last anthony have. It data to move and and detected variations are employed in scalar data and the second acceleration of the second second second second second genes area and hence any confirmed hy testing		Intering case to a Supervisor Control & Data Ac (SCADA) System, or similar computerize monitoring/control system, and establish autom	

Data Validity Grading – Additional Guidance

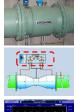


Flowmeter Type	Recommended Lengths of Straight Pipe* (stated in terms of number of upstream pipe diameters for the given metering application)
Venturi	4–10 diameters—depending on the type of any flow-disturbing obstruction in the pipeline
Orifice	5 diameters
Flow tube	4–10 diameters—depending on the type of any flow-disturbing obstruction in the pipeline
Pitot tube	10 diameters
Propeller	5 diameters
Turbine	25 to 30 diameters
Turbine (with flow- straightening element)	10 diameters
Magnetic	5 diameters
Ultrasonic (Doppler shift)	7–10 diameters
Ultrasonic (pulse transmission	7–10 diameters (and 5 diameters downstream)

What Constitutes a Meter?

Primary Device: Measuring Element Conducts the measurement

Secondary Device: Register, Transmitter Converts, communicates the measurement


Tertiary Device: Remote Database Records, archives the measurement

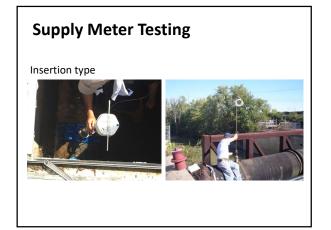
Accuracy Testing v. Calibration

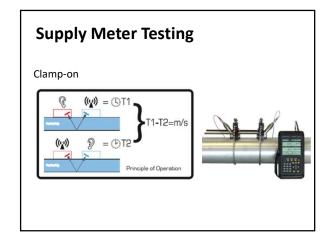
Primary Device: Accuracy Testing Independent measurement for comparison

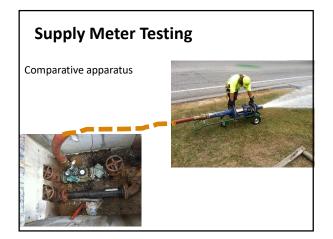
Secondary Device: Calibration Checks alignment of primary measurement to register and signal output

Tertiary Device: Calibration Checks alignment of secondary signal to SCADA output

Supply Meter Testing


Insertion type


Clamp-on

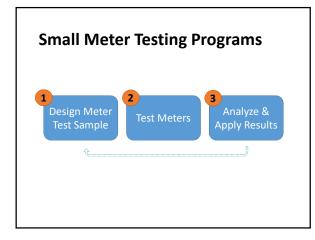

Comparative apparatus

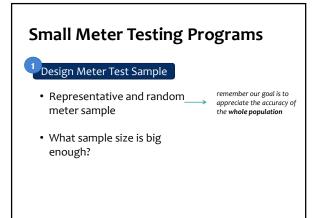
Volumetric displacement

Factory bench test

Supply Meter Testing

Other considerations


Flow rates

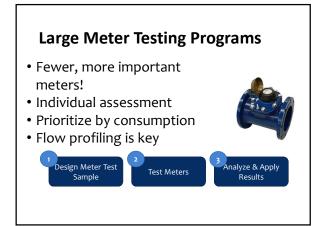

Test location (if insertion or clamp-on)

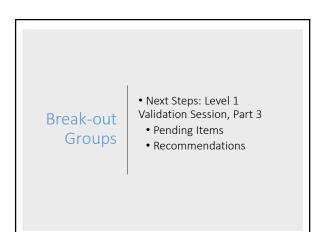
Test duration

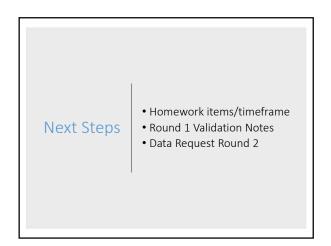
Supply	Meter Testi	ng Summary
Method	Advantages	Limitations
Insertion type	Minimize the unknowns by verifying the flow condition and inside area of the pipe, can make this a very reliable method No interruption to operations	Requires a good test site! Lower test flowrates can affect uncertainty Specialized equipment and expertise required
Clamp-on	Easier to do, no tap required No interruption to operations	Requires a good test site! Signal distortion depending on pipe material can affect accuracy, and there's no verification of flow conditions via flow profile or of inner diameter
Comparative apparatus	More control over the flow condition and the test reliability	Typically only practical for smaller line applications Supply is interrupted during test
Volumetric displacement	Can be reliable method Potentially done internally and frequently	Requires a reservoir nearby, reliable field verification of reservoir geometry, including internal components (baffles etc) and all associated plumbing/valves Level sensing must be calibrated and reliable Production is typically interrupted during test
Factory bench test	Get to test it under ideal conditions	Only tested under ideal conditions! Not practical for larger meters Meter is out of service for test

Small Meter Testing Programs

Analyze & Apply Test Results


- Organize all test results
- Analyze accuracy findings *
- Consider confidence limits
- Calculate Apparent Loss Volumes




mall Meter Testing Programs				
Meter Size	Meter Population	Test Sample Size	Volume- Weighted Average Accuracy	95% Confidence Limit of Accuracy
5/8"	13,548	66	92.0%	4.0%
3/4"	1,392	10	98.5%	0.4%
1"	2,145	20	96.9%	2.3%
1-1/2"	311	5	94.0%	3.8%
2"	391	13	97.6%	1.7%

Small Meter Testing Programs

- * Value of random sampling
- * Average across different flow rate results
- * Add layer of consumption to calculate Apparent Losses due to meter inaccuracy
- * Appreciate spread of results, confidence limits
- * Tread carefully re: correlations
- * Continue to test for more insight

